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Swirl-flow effects in a duct bending through a substantial angle
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Abstract. The vortical three-dimensional flow of an inviscid incompressible fluid through a bend in a slender duct
is investigated with nonlinear coupling between the centre-line and cross-sectional velocities. The bend, although
gradual, turns the duct flow through a finite angle typically. The theoretical work is motivated directly by the
industrial application to food sorting, involving the rapid firing of impulsive ejectors and sprinklers which combine
short time scales and flow turbulence, and indirectly by other applications. The flow response depends largely on
the relative radius of curvature in the bend along with the cross-sectional swirl and the shear in the perturbed
streamwise velocity profile at the entrance. Solutions for the motion within and beyond the bend are determined
computationally through a fourth-order compact scheme, for both rectangular and smooth cross-sections, and
analytically for a general cross-section, under varying entrance conditions (especially for increasing swirl there,
although a long bend for example also enhances swirl downstream). The total streamwise vorticity is found
analytically to increase in direct proportion to the distance along the bend, whether the inertial effects are weak or
strong. The smallness of the pressure loss also contrasts with that in viscous flows.

Key words: bends, ducts, food, sorting, swirl.

1. Introduction

The present study arose directly from numerous contacts with, and work done for, the food-
sorting industry. There is particular industrial and theoretical interest here in the performance
of impulsive ejectors using a pressure supply to force fluid quickly through a bend in a duct.
The research undoubtedly has wider industrial interest also.

Bends in ducts, pipes, arteries and other internal shapes are common, arising either through
necessity in manufacturing or through nature, in industrial flow applications, plumbing, ma-
chinery dynamics and physiological flows. In practice, three-dimensional ducts for example
often involve quite basic cross sections which are rectangular or circular for the sake of ease
and reasonable precision in manufacture, rectangles in particular being used widely in heat
and mass-transfer devices. The bends in ducts are often quite slender, but turn the duct centre
line through a significant angle. Many of the flows produced through such bends are turbulent
and/or unsteady; one such form arises in the rapid firing of impulsive ejectors and sprinklers
where a high-pressure supply is used to force fluid at quite high speed through a bent duct
over a relatively short time interval, and a not too dissimilar process occurs in pulsating blood
motion into and through the aortic arch. The characteristic Reynolds numbers are large and
the bends generally are, in practical terms, the sources of substantial losses in pressure head
and of related complications concerning enhanced secondary motions, due to centrifuging,
while on the theoretical side they tend to restrict or negate the use of traditional inviscid one-
dimensional duct-flow analysis for an entire duct. The important typical bend-flow properties
in reality thus involve

(a) basic cross sections, e.g. rectangular;
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Figure 1. Sketch of the bent duct flow configuration (a) Cross-section in y, z (arbitrary). (b) Centre-line path,
with θ1 being finite.
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Figure 2. Rectangular cross section. Computational results for the entrance condition (3.4) on [UI , VI ,WI ] at
θ = 0,with c = 0·01(π/2)2,and comparison with the analytical result from (4.2). (a) and (b): cross-plane velocity
profiles at θ = 1. (c): streamwise vorticity at θ = 1. (d): 2W/π along (y, z) = (0, 1

2 ) versus πθ/2, from a coarse
grid computation (lower curve) and analysis (upper curve), within and after the bend.

(b) turning through a finite angle;
(c) turbulent flow;
(d) unsteady motion;
(e) large flow rates.
The point (c) is due to valves or imperfections upstream, or to the duct walls not being

perfectly smooth because of manufacturing considerations. The same points (a)–(e) apply
in many industrial settings as well as that of food sorting where the necessary supply of fast
moving fluid cannot be achieved by means of an ideal smooth-walled straight vessel, often
because of spatial as well as duct-manufacture constraints. Added to this are complications
from multi-component devices, complex geometry and multiple firing over an extremely short
time period.

For the three-dimensional bent-duct flows above, i.e. practical industrial ones involving
all or part of the aspects (a)–(e), understanding and prediction seem to consist mostly of
interesting empirical results for the losses and occasional remarks on secondary flows: see
in [1–4].
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Figure 2. Continued.

By contrast there has been much theoretical study on laminar, viscous, developing or fully
developed, steady flow through a bent pipe rather than the cases surrounding (a)–(e) of interest
to industry. Fully developed motions were considered by Dean [5] and many others including
[6–12]. Developing entry motions were studied either for a uniform entry velocity profile, as in
[13, 14] and many references therein, or for a sheared profile with no slip at the walls, as in [15,
16] and references therein. Unsteady flows have also been investigated along similar lines,
for example by [11, 17]. See also in [18], [19, Chapter 5], [20], a recent experimental and
computational study of swirling flow in a graft in [21], and a review by [22]. Two-dimensional
bends are considered by [23–29], covering computations, experiments and theory.

The current focus is different from that of the Dean-type problems, however. The large-
ness of the typical Reynolds number coupled with the short time scale and likely turbu-
lence in the duct-flow applications described earlier (indeed all of (a)–(e)) tend to call for
a nonlinear inviscid treatment rather than, or complementary to, the majority of those in the
preceding paragraph. The present treatment is associated with plug flow in the turbulent case
and with the property of attached flow persisting for a finite scaled time in the laminar case.
Indeed in the unsteady case where virtually inviscid flow is set up almost immediately the vis-
cous thickness of the Rayleigh layer increases only as the square root of 〈kinematic viscosity
multiplied by time〉, which remains comparatively small for many common fluids over short
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Figure 2. Continued.

time scales. The industrial and other applications also point to the inclusion in the theory of fi-
nite angles of flow turning produced by the three-dimensional bend. Hence herein we assume
an inviscid nonlinear response together with a slightly disturbed uni-directional incident flow
entering a sizeable bend of simple cross section; these assumptions are all in line with the
practical aspects (a)–(e) stressed at the outset. Likewise the impact on one-dimensional analy-
sis requires consideration, given the potentially substantial effects of swirl on the centre-line
velocity within the bend and the question of its influence or decay downstream of the bend.
These issues, which are supplemented by complex aspects of compressibility in those of the
real applications that involve gas dynamics, form the background for the current study, which
is for an incompressible fluid.

The nonlinear inviscid-flow theory taking account of (a)–(e) above is a main new feature
here, combined with an investigation of incident swirl effects both numerically and analyti-
cally and with the capability of extending classical compressible duct-flow theory to allow for
bends.

Section 2 describes the configuration and assumptions in detail for the inviscid motion
ahead of, inside, and beyond the bend in a duct. The duct and bend are taken to be slender but
producing in the typical case a finite turning angle, for example 90◦, in total, and any unsteady
effects are confined to thin negligible wall layers The nonlinearly coupled flow through the
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Figure 2. Continued.

bend is most dependent on the input swirl in the cross-sectional plane and the shearing in
the streamwise perturbation velocity profile at the bend entrance; see also [22]. In industrial
settings this input swirl and shearing are provoked by conditions further upstream due for
example to a valve, surface roughness or another bend, and the swirl and shearing combine
with the bend curvature to form the main parameters, which for a given turning angle are the
relative shearing velocity multiplied by the relative radius of curvature and the comparative
strength of the swirling flow. Computational compact-differencing and analytical properties
are discussed in Sections 3 and 4–5 in turn, the former being for rectangular and other, smooth,
cross sections and the analytical findings applying mostly for a general bounded cross section.
A linear increase which is found numerically and confirmed analytically in the integrated
streamwise vorticity with increasing distance around the bend is the major general effect from
the centrifuging in the bend, an effect which controls the downstream flow for weak or strong
nonlinearity within the bend. Further points are presented in Section 6, in particular on the
reduction in pressure response and the accentuation of secondary flow swirl in the bend.
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2. The bent-flow configuration

The duct of concern here is straight in its upstream section, then bent in the middle and fol-
lowed by a straight section downstream as shown in Figure 1. The total angle thus turned
through is denoted by θ1. The coordinates x, in the direction of the duct axis, and y, z,
perpendicular to that axis, are nondimensionalized with respect to a typical cross-sectional dis-
tance hD of the upstream duct, while the corresponding nondimensional velocity components
u, v,w are measured relative to the upstream incident nearly uniform axial flow speed uD at
the onset of the bend. The pressure variation p is based on ρDu2

D where ρD is the density of the
fluid, which is taken to be inviscid and incompressible. The radius aD of curvature of the duct
centreline in the bent section is assumed to be constant and large compared with hD, giving a
large ratio aD/hD ≡ a. Again, the incident motion is nearly uniform and nearly unidirectional
(i.e. nearly standard inviscid flow) in the sense that the streamwise (axial) velocity u is unity
to within an order ε which is small and the cross-sectional velocity components v,w are
also small. The aim is to determine the three-dimensional steady flow through the bend and
beyond.

The assumptions taken here, then, are in summary that the motion is steady, inviscid and
incompressible, with almost unidirectional incident flow ahead of the slender substantial bend
of simple cross section. These allow for the points (a)–(e) listed in the introduction.

For the flow in the bend cylindrical polar coordinates r, θ̃ , y may be used as defined in
Figure 1, with corresponding velocity components w, u, v again. Here r = a + z with z
typically of order unity and θ̃ is equivalent to x/a and is guessed to be also of order unity if
the total angle θ1 is substantial. Continuity would suggest that v,w are then of order a−1 at
most, yielding a radial inertial force (∼ v∂w/∂y, w∂w/∂r) proportional to a−2, whereas the
centrifugal force (∝ −u2/r) which represents the main effect of the bend is larger, as it is
proportional to a−1.

The role of the shear in the streamwise velocity is important here, combined with the
entrance swirl. The reason is that the centrifugal force can be balanced simply by the radial
pressure gradient if for instance the streamwise velocity has no incident dependence on the
cross-plane coordinate y normal to the radius. This allows a flow solution in which the stream-
wise velocity u depends only on θ̃ , the streamwise pressure gradient is −uu′, the pressure
correction is in effect a−1u2z and u is determined by the conservation of mass, essentially
u multiplied by the cross-sectional area of the bent duct. Thus the flow then remains quasi-
one-dimensional and the bend has no major effect. A similar conclusion holds if u depends
only on z, θ̃ . In contrast, if there is strong vorticity/shear such that u depends nontrivially
on the radial and normal-radial distances z, y as well as θ̃ , then the above centrifuging radial
pressure variation also sets up a comparable pressure variation in the normal-radial y direction
and hence through inertia larger cross-plane velocities v,w than expected. These, in turn,
indicate a probably shorter scale in θ̃ for continuity and overall the influence of the bend can
be much stronger.

Here, to account for the above contrast, we take an intermediate case of low swirl and
relatively small radial and normal-radial dependence in the streamwise velocity u, throughout,
in the sense that (u− 1, v,w) is

ε(Ũ, Ṽ , W̃ )

with the given factor ε being small. The factor ε represents broadly the comparative strength
of the incident streamwise shear and cross-section swirl, while Ũ , Ṽ , W̃ are of typical order
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unity and depend on θ̃ , y, z. This form for the velocity is accompanied by a pressure p
variation εp̃0(θ̃)+ z/a − z2/(2a2)+ ε2p̃1(θ̃ , y, z) in the bend. The parameter εa is denoted
by α below and is taken to be of order one. Also to normalize we set

[Ũ + α−1�z, Ṽ , W̃ ] = α−1θ−2
1 [U, θ1V, θ1W ], θ̃ = θ1θ,

together with αθ2
1 p̃0 = p0, α

2θ2
1 p̃1 = p1 −�θ2

1 z
2 and � is zero or unity as specified just

below. Then the equations of continuity and momentum reduce to

Vy +Wz = 0, (2.1a)

Uθ + VUy +WUz = −p′
0(θ), (2.1b)

Vθ + VVy +WVz = −p1y, (2.1c)

Wθ + VWy +WWz − 2�U = −p1z. (2.1d)

In the straight sections (θ < 0, θ > 1) of the duct, � is identically zero in effect. Indeed,
ahead of the bend one acceptable flow solution has V,W,p1 all zero, with U dependent only
on θ and U+p0 constant, a solution which represents unidirectional incident motion. This is a
standard feature of straight inviscid duct flows. Other incident flows are possible, nevertheless,
with swirl such that V,W are nonzero and the evolution of the latter components is decoupled
from that of the streamwise velocity, within a straight section. In the bent section (0 < θ < 1)
of duct, on the other hand, � is identically one.

The flow solution has parabolic dependence on θ,which clearly acts as a time-like variable
in (2.1b–d), but there is essentially elliptic dependence in the y, z cross-plane. The starting
condition at the entry to the bend is taken to be

[U,V,W ] = [UI , VI ,WI ] (y, z) at θ = 0 (2.2a-c)

where the scaled velocity components on the right-hand side are given from the incident
straight-duct flow described earlier and are generally of order one. Although the parameters
α, θ1 provide some measure of the strength of the bend effect, the comparative values and
forms of the swirl components VI ,WI are also important as we will see. Their relationship
to the original velocity components is (UI , VI ,WI ) ≡ αθ1(θ1ŨI + α−1�zθ1, ṼI , W̃I ) and is
worth recording here. Our primary concern will be with the influences of the swirl compo-
nents, particularly in view of the practical applications, whereas those of the other parameters
will be addressed afterwards in Section 6. The boundary conditions at each θ station read

ψ = 0 at the duct boundary, (2.3a)
∫∫

U dy dz = constant (for all θ). (2.3b)

Here (2.3a) stems from use of the scaled stream function ψ such that

V = −ψz, W = ψy, (2.4)

in view of (2.1a) which implies mass conservation for the cross-plane flow. Condition (2.3b)
also comes from the continuity balance, but at higher order, applied in integrated form over
the whole cross section at each θ station.
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The flow in the bend and downstream of it is therefore governed by the coupled Euler-
like system (2.1a–d) subject to (2.2a)–(2.4). There is no upstream influence at this level of
working and in principle a forward march in θ should give the flow solution for any prescribed
θ1, α value with the entrance conditions (2.2a–c) prescribed.

3. Computational study

Numerical solutions were computed for the case of a constant rectangular cross-section first,
given by y, z ranging from 0 to y1, 0 to z1, respectively, and prescribed constants y1, z1, for
all θ . The numerical method used for tackling the governing equations is based on solving
the streamwise-vorticity equation

Rθ + VRy +WRz = 2�Uy (3.1)

combined with (2.1b), (2.4). Here (3.1) follows from eliminating p1 between (2.1c,d) and
setting

R = ∇2ψ (3.2)

with ∇2 denoting the Laplacian operator ∂2/∂y2 + ∂2/∂z2. The solution is forward marched
in θ from given conditions at θ = 0. If to begin with we consider straightforward backward
differencing being applied to the θ derivatives in (2.1b), (3.1) then, in (3.1) for example,
∂R/∂θ is replaced simply by (Rn+1 −Rn)/"θ . Here the subscript n denotes quantities at the
successive discretized θ values, separated by a small step "θ , and Rn is known, whereas all
other terms are taken as unknowns at the θ level (n+ 1).

Discretized versions of the governing equations are then solved iteratively for the (n+ 1)-
level variables, using (2.1b) to obtain all the new Un+1 values for given Vn+1,Wn+1, then (3.1)
for all the Rn+1, (3.2) with (2.3a) for the ψn+1, (2.4) to update all Vn+1,Wn+1 values, and then
re-solving for Un+1 and so on. The iterations are continued until the nonlinear discrete system
produces convergence. With derivatives in y, z treated by compact differencing (see [30–32]
and (3.3a–c) below), the Equations (2.1b), (3.1), (3.2) are solved through multiple sweeping
line-by-line across in y from 0 to y1. It was soon found that, for (2.3b) to be satisfied, p0 must
be identically zero, as confirmed in the next section, and that property reduced the number
of iterations required. In the compact differencing approach, for the U equation the inertial
term V ∂U/∂y +W∂U/∂z is written in conservative form as P +Q where, in view of (2.1a),
P ≡ ∂(VU)/∂y, a relation which is discretized as

3∑
%=1

{g%P% − g̃%V%U%/"y} = 0, (3.3a)

and similarly for Q ≡ ∂(WU)/∂z. The latter is discretized in the form

3∑
m=1

{gmQm − g̃mWmUm/"z} = 0. (3.3b)

These discretizations are combined with the implied U -P -Q relation, which is

(Un+1 − Un)/"θ + P +Q = 0. (3.3c)
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In (3.3a,b) the coefficients g1, g2, g3, g̃1, g̃2, g̃3 are 1
3 ,

4
3 ,

1
3 ,−1, 0, 1, respectively, and the

subscript % = 1, 2, 3 denotes values at three representative successive positions in the y direc-
tion separated by a small step length "y, to give fourth-order spatial accuracy, and likewise
for m = 1, 2, 3 in z with a small step "z, whereas (3.3c) is applied at every single point.
The same treatment is applied to the R equation and likewise for derivatives in the R-ψ
equation and in updating V,W . Fine grids were necessary to avoid significant oscillations
as the strength of the entrance flow was increased, particularly for increasing θ . Upwind
differencing was also applied to the y, z derivatives in (2.1b), (3.1) to account for sign changes
in V,W and this proved more stable though less accurate generally. Comparisons with results
from a more standard second-order approach were found to be supportive of the accuracy of
the fourth-order method (and we remark that the latter works far better in the present context,
where viscous smoothing is absent). In addition, the above backward differencing in θ was in
practice made second-order accurate by taking half steps in θ and averaging.

Typical grids used had 120 by 120 points in the cross-section, a step length 0·0005 to
0·002 in θ and 10–50 iterations per step. Refinement was required for the more severe cases
described later. Comparisons were made on different grids, suggesting an error estimate of
well below 1% in general. In some cases refined grid calculations required rather fewer
iterations. The scheme was marched forward in θ through the bend from zero to 1 with �
equal to unity and then from 1 onwards � was set to zero for the downstream section of the
duct.

Results were obtained for various entrance conditions (2.2a–c) and values of the parameters
α, θ1. For now we concentrate on a 2 by 1 rectangle, so that y1 = 2, z1 = 1. The results
presented are in Figures 2–5, for the two forms of input condition [UI , VI ,WI ] given by

2c[y3/3 − y2 + z2y − zy, 0, 0], (3.4)

2

5π

[
c1 sin y, −2c2 sin

(πy
2

)
cos(πz), c2 cos

(πy
2

)
sin(πz)

]
, (3.5)

partly to provide an inkling of generality. Here c, c1, c2 are prescribed constants, with |c2| giv-
ing the maximum amplitudes of the scaled streamwise vorticity R at the entrance. Figure 2 is
concerned with (3.4) at a low value of c, while Figures 3–5 show results for the entrance form
(3.5) with c1 fixed at π3/16 for a range of values of the input swirl constant c2. Comparisons
are presented or noted with the analytical work of the following sections. It is interesting also
to note the evolution of V,W to a new steady state beyond the bend (where � is zero) and the
separate evolution of the U field there.

In more detail, Figure 2(a–d) shows the velocity components V,W and vorticity R ob-
tained at the end of the bend, followed by the axial development of the value of W midway
along the left side of the duct according to the computational solution and to (4.2) below.
The agreement is close. Figure 2(b,c) indicates the slight off-symmetry at this zero level
of swirl. Figure 3(a–c), which is likewise for zero input swirl but a different UI profile,
also indicates small effects appearing by the end of the bend and beyond, although the U
profiles in Figure 3(a) are significantly inclined compared with the horizontal input profiles.
In Figure 3(c), and subsequently, D denotes the computed double integral of R with respect
to y, z over the cross section; see the left-hand side of (4.5) below, while the linear prediction
from the right-hand side also agrees with these computations. The rest of the axial develop-
ment shown in Figure 3(c) is in line with (4.1) below and with Figure 2. Figure 4(a–d), for
increased (nonlinear) input swirl velocities, shows more distorted profiles of U,V,W,R at
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Figure 3. Rectangular section. Solutions for input (3.5) with c1 = π3/16, swirl parameter c2 = 0. (a) 4U/π2

profiles at θ = 1. (b) 2V/π, 2W/π profiles at θ = 1, θ = 3/2. (c) gives D and V,W along different cross-plane
positions, versus πθ/2; D is the integral of R over the duct cross-section at any θ station.

the end of the bend and beyond. In Figure 4(a,b) the average of the maximum V,W values
is about 3 times the maximum U value, while the R profiles in Figure 4(c) imply substantial
rotation due to the increased helical motion. In addition, strong variation near the duct edges
becomes apparent in Figure 4(a), especially at and near y = 0, and indeed grid refinement
pointed to strong variation of R near the corners: see Figure 4(c). Here again the axial
dependence of D in Figure 4(d) suggests linear behaviour. Figure 5(a–d) is for even larger
input swirl. Much more pronounced contortion of the U profiles occurs now (Figure 5(a))
but the U values remain bounded by zero and 0·1, the average maxima of V,W are up to six
times the maximum of U and the relative change from the entrance conditions is increased, as
is the rotation, in Figure 5(b–d). An exception is near the corners in Figure 5(c). The edge
effects are clearly accentuated here. Figure 5(d) once more hints at linear growth ofD within
the bend and no growth thereafter, as well as presenting a grid-refinement study for this high-
amplitude case. The refinement supports the general numerical accuracy (and ties in with the
later analysis).
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Figure 3. Continued.

Solutions were also computed for certain smooth cross-sections, in order to generalize the
applicability as well as to avoid any singular responses associated with corners. The smooth
shapes were set by transforming conformally from the above rectangle, adopting the map

ζ =
4∑
n=1

[(
ζ̄ − ζ̄n

)2 + 2qe±iσ
]1/2 − µζ̄ . (3.6)

Here ζ ≡ y + iz, ζ̄ ≡ ȳ + iz̄ are complex coordinates, while ζ̄n for n = 1 to 4 signify
the four mapped corner points and the signs in (3.6) are chosen such that the eight branch
points associated with the square roots lie outside the flow region and geometrical symmetry
is preserved. The corresponding eight branch cuts are also taken outside. The real constants
σ,µ are adjusted to make the complex derivative dζ/dζ̄ vanish at one corner and hence, by
symmetry, at all corners. This ensures that the shape in the y − z plane is smooth, free of any
corners, as in Figure 6(a–c). Then we performed computations in ȳ, z̄ rectangular coordinates
using a version of the earlier approach modified to account for the modulus of the complex
derivative and other mapping quantities appearing in the transformed governing equations.
The different cross-sectional shapes obtained from different values of the real constant q
and the main flow properties, which yield the same trends as for the rectangular section, are
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Figure 3. Continued.

presented in Figure 6(a–d). These bent smooth-duct flows have entrance conditions imposed
as in (3.5) but with ȳ, z̄ replacing y, z.

4. General flow properties

Most of the following properties hold for arbitrary cross-sections of duct and arbitrary input
conditions, with typically order-one angles θ1 being turned through (as in the main industrial
applications). The flow solution in the bend depends on both the amplitude and the form of
the input flow. Thus a simple exact solution for all θ has the component U being an arbitrary
function of z and V,W,R,ψ being zero, which corresponds to continued one-dimensional
motion, with the pressure response p1 then being 2� multiplied by the integral of U with re-
spect to z. It is clear from the properties below, however, as well as from the earlier numerical
results, that such a simple solution is atypical.

Suppose that the inertial effects are comparatively small, this being due to low entrance
swirl and/or θ1 small and/or α small for example. Then to a first approximation, given that the
characteristic U value is of order unity and V,W are not large, (2.1b) implies that U remains
as UI(y, z) and so, when VI ,WI are zero, (3.1) yields the vorticity response

R ≈ 2�θ∂UI/∂y. (4.1)
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Figure 3. Continued.

For the case of UI in (3.4) in a rectangular 1-by-2 duct the response (4.1) with (2.4), (3.2)
gives the prediction

[R,ψ, V,W ] ∼ 2c�θ[2(d1 + d2), d1d2, (1 − 2z)d1, 2(y − 1)d2] (4.2)

where d1 ≡ y2 − 2y, d2 ≡ z2 − z. This agrees well with the computational results of
Section 3, as is anticipated in Figure 2.

The process indicated above, of V,W essentially driving the evolution of U through (2.1b),
which then produces the shear ∂U/∂y to drive the vorticity R evolution (through (3.1)), which
then controls ψ,V,W (through (3.2), (2.4)), and so on, continues in principle for all θ within
the bend, at any values of the parameters θ1, α and input velocity profiles, i.e. in the general
nonlinear inertial case. It applies for all the computations described in Section 3, the majority
of which have UI dependent only on y and without any symmetry in y.

When θ1, α and the input conditions are of order unity, the flow problem is largely a
numerical one of course, but there are a few useful general properties. First, for a uni-
form cross-section of duct a double integration of (2.1b) in y, z over the cross-section and
application of Green’s theorem show that

p0 ≡ 0, (4.3)
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Figure 4. As Figure 3 but the input swirl velocity has c2 = 3π/2. (a) 4U/π2 profiles at θ = 1, θ = 3
2 . (b)

2V/π, 2W/π profiles at θ = 1. (c) 2R/π profiles at θ = 1, θ = 3
2 . (d) has D, and W along (y, z) = (0, 1

2 ),
versus πθ/2.

since (2.3a,b) hold. Second, (2.1b) with (4.3) indicates that U is conserved along streamlines,
so that

U is O(1) for all θ, (4.4)

assuming that the input component UI is of order unity. Third, a double integration of (3.1)
in y, z gives the relation

d

dθ

[∫∫
R dy dz

]
= 2�

∫
(Ur − U%) dz (4.5)

between the total integrated vorticity evolution and the left (%) and right (r) side values of U
induced on the duct boundary at a fixed z.

The relation (4.5) is very helpful. It agrees with (4.1), (4.2) for small inertial forces. It
also holds for any finite inertial case however due to cancellations in the nonlinear inertial
contributions. The computational results in Section 3 for both rectangular and smooth cross
sections tend to confirm this result for all the parameter values studied and indeed (4.5) can
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Figure 4. Continued.

be treated as a valuable check on the computational accuracy. Further use is made of (4.5)
below.

Fourth, for general O(1) values of the inertial forces we consider the motion downstream
of the bend as θ increases. It seems clear from the computational results supported by (4.5)
again with zero � that the streamwise vorticity R tends to a nonzero steady state R∞(y, z)
say in general as θ → ∞, while the streamwise velocity U tends to a U∞(y, z) form. The
downstream distributions R∞, U∞ satisfy (2.1b), (3.1), (3.2) with zero θ-dependence and zero
�, and hence are de-coupled, and they appear to be arbitrary in that they are determined by the
upstream integrated bend effects. It is noteworthy that the influence of the bend on the cross-
plane flow (a flow which may be zero before the bend) does not peter out far downstream on
the present scales.

Finally here the flow behaviour near a corner requires discussion, in the light of the earlier
numerical work. The following suggests that a singular response occurs in general. Suppose
that for θ of order unity the vorticity behaves in the form

R ∼ s−n (4.6a)

at small distances s from the corner, where the unknown power n is assumed positive. Then we
have from (2.4),(3.2) that V,W ∼ s1−n. So along one straight side, say where z is constant
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and y is tending to zero, (2.1b) gives ∂U/∂θ balancing n−1y1−n∂U/∂y essentially, and in
consequence U is a function of θ + yn locally. If the input condition is taken as U = y at
θ = 0 for instance, then Un = θ + yn thereafter, yielding 2∂U/∂y as

2yn−1(θ + yn)
1
n
−1. (4.6b)

That leaves R in (3.1) satisfying the same balance as U above but forced by (4.6b), along the
same side locally. If the input R is zero it follows that the local solution for θ > 0 is

R ∝= 2n

(2n− 1)
(θ + yn)

1
n
−1

{
y2n−1 − (θ + yn)2− 1

n

}
, (4.6c)

provided n �= 1
2 . The behaviour R ∼ y2n−1 from (4.6c) is consistent with the original form

(4.6a) (here y = s) if

n = 1
3 , (4.6c)

justifying the assumption that n is positive. It is interesting that, as streamlines accumulate
near the corner, according to the above, U is not constant there, despite the vanishing of V,W,
and that a similar treatment holds along any radius from the corner, suggesting an extension
of (4.6a) and related quantities to include azimuthal dependence locally. The nonlinear trend
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indicated by (4.6a–d) near a corner agrees with a small θ solution and it seems to be in line
with the computational results for a rectangular cross section.

Further inertial and other effects are discussed in Section 6, after the investigation of swirl
effects in the next section.

5. Small and large swirl effects

The influence of the swirl present upstream is of particular interest for practical as well as
theoretical reasons; the practical reasons concern valves, imperfections and wall roughness
upstream as discussed in detail in the introduction with regard to the industrial setting.

5.1. SMALL SWIRL

For relatively small swirl at the entrance and beyond, the U Equation (2.1b) with (4.3) is
dominated by ∂U/∂θ being zero, so that U remains as UI(y, z) to leading order. This is
similar to (4.1)–(4.2), as is the balance ∂R/∂θ ≈ 2�∂U/∂y from (3.1). Hence the weakly
nonlinear result

R = (∂WI/∂y − ∂VI/∂y)+ 2�θ∂UI/∂y (5.1)
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follows, showing explicitly a linear growth of the streamwise vorticity in line with the general
nonlinear property (4.5). The result (5.1) usually continues for the entire bend since 0 < θ <

1 there, with exceptions arising only if another parameter has an extreme value; comparisons
with Figures 2,3 are in keeping with this result.

5.2. LARGE SWIRL

For relatively large swirl, on the other hand, there is a strongly nonlinear effect. Here again
(4.5) is of interest, combined with (4.4). If the swirl velocities are large, of order " say, then
the first substantial response occurs over the short scale θ = "−1θ∗ with θ∗ of order unity and

R = "R0 + R1 +"−1R2 + · · · , (5.2a)

U = U0 + · · · , (5.2b)

along with expansions for V,W similar to (5.2a), where R0, U0 and so on are of order unity.
So R0, V0,W0, U0 satisfy the original governing equations but without the centrifugal term
2∂U/∂y, leaving the streamwise and cross-plane flows decoupled at leading order. The domi-
nant flow solution therefore equilibriates downstream at large θ∗. In the cases of Figures 4,5 in
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Figure 4. Continued.

fact the input conditions are such that the dominant solution is in equilibrium immediately. At
higher order, however, R2 is driven both by ∂R2/∂θ

∗ and inertial forces balancing 2�∂U0/∂y.
Hence integration over the cross section gives

d

dθ∗

[∫∫
R2dy dz

]
= 2�

∫
(U0r − U0%) dz. (5.3)

Downstream, in view of the equilibration above in whichU0 tends to an 0(1) form independent
of θ∗, (5.3) implies that

R2 ∝ θ∗ as θ∗ → ∞. (5.4)

This is again in line with (4.5).
The behaviour (5.4) shows that inertial effects continue to dominate downstream, from

(5.2a,b). The fluid spins more rapidly in the cross section, as the three-dimensional stream-
lines have slopes dy/dθ = V, dz/dθ = W which are comparatively large. The slight growth
in vorticity inferred from (5.4) also agrees with the computational solutions in Figures 4 and
5. If θ1 and other parameters are not particularly extreme, then the growth (5.4) is insufficient
to disturb the expressions in (5.2a,b), which in essence describe the entire bent-duct motion.
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Under sufficiently extreme (but not uncommon) conditions a second stage occurs when
θ = "/ is large and of order " but expressions of the form (5.2a,b) re-apply. These yield
the quasi-planar balances

V0R0y +W0R0z = 0, V0U0y +W0U0z = 0 (5.5a,b)

from (2.1b),(3.1),(4.3). The solution has the scaled vorticity R0 being f (/)R∞(y, z) with
R∞ determined by matching with the previous stage and depending on the stream function
but with f unknown. Then at higher order ∂R0/∂/ appears together with further inertial
terms and 2∂U0/∂y, and so upon cross-sectional integration, as with (4.4), (4.5), the rate of
change of the R0 integral with respect to/ must remain O(1). It follows that f (/) becomes
linear in /. Thus the linear growth of the vorticity with θ continues. Its general form is

R ∼ θR̄0(y, z), U → Ū0(y, z) (5.6)

and likewise for V,W,ψ if θ can become sufficiently large with � still nonzero. In a more
precise argument here, a fluid particle on any flat side of a rectangular duct must remain on that
side, from (2.3a),(4.6) and the presence of cross-flow stagnation points at the duct corners, and
so in the cases in Section 3 where UI is independent of z for example the streamwise velocity
U has to remain uniform on the sides y = 0, y1 throughout the bend, from (2.1b),(4.3). So
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Figure 5. As Figure 3 but with input swirl parameter increased still further, to c2 = 3π. (a) 4U/π2 profiles at
θ = 1, θ = 3

2 . (b) 2V/π, 2W/π profiles at θ = 1. (c) 2R/π profiles at θ = 1, θ = 3
2 . (d) gives D versus

πθ/2 from three different numerical grids: (i) coarse, 61 × 61 in cross-plane; (ii) medium, 121×121; (iii) fine,
161 ×161.

Ur,U% in (4.5) are then constants, and in general different constants, which can be evaluated
directly from the input profile UI and make the right-hand side of (4.5) an explicit constant
for all θ. Supposing also that the cross-plane flow eventually swirls only clockwise, say,
we see that U must then tend towards uniform values on the two other sides z = 0, z1,

again from (2.1b),(4.3), these values being equal to those on y = y1, 0, respectively, and
similarly anticlockwise swirl interchanges the values. This argument generalises as indicated
in Figure 7 (which shows the large-θ form for a smooth input UI , along the left, top, right and
bottom edges of a 3 by 1 rectangle) and points to an approach towards discontinuities in the
U distribution at certain of the duct corners, in line with the computations. The argument also
fixes precisely the r, % values in (4.5) downstream and hence the growth rate in (5.6).

In addition to (5.2a,b), (5.5a,b),(5.6) which hold in the core of the motion, thin edge layers
are generated near the duct boundary, to allow for significant θ variation. Their typical thick-
ness is of the order exp(−θ2) in order to balance the operators ∂/∂θ and, from the tangential
cross-plane component, θW0∂/∂z near the sides y = 0, y1 for example, where W0, z are
usually of order one. The same small exponential scale is implied in the trend to a discon-
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tinuous U distribution in Figure 7, as well as in the core centre(s) where V0, W0 vanish. The
edge layers bring in substantial ∂/∂θ evolutionary contributions from (2.1b),(3.1) as opposed
to the quasi-straight inertially dominated form (5.5a,b) in the core. This description for bent
flows downstream, and the emergence of thin edge layers as well as the growth in (5.6) with θ
associated with increasingly high swirl, explains the numerical difficulties for extreme cases
in Section 3. (After the bend the linear increase in (5.6) ceases of course).

6. Further discussion

6.1. VARYING THE TURNING ANGLE, ENTRANCE VELOCITIES AND CURVATURE OF THE

BEND

Here we begin by considering the influences of varying (i) θ1,(ii) ε,(iii) a separately, which
are related to the influences described in the previous section.

Thus (i) a small turning angle θ1 makes the normalized input velocities UI, VI ,WI small,
of successive orders θ2

1 , θ1, θ1, if a, ε and the real velocity perturbations ŨI , ṼI , W̃I are kept
fixed. Assuming U,V,W to take the same successive orders shows that the inertial forces
then are again low although the centrifugal effect is diminished compared with that in (5.1).
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Conversely a large value of θ1, for a highly coiled duct, requires renormalizing U,V,W by
factors θ2

1 , θ1, θ1 and using the original angle θ̃ at first. This reinstates the nonlinear governing
equations but subject to 0(1) entrance conditions, while the θ̃ range is semi-infinite in effect.
Domination by high swirl as in (5.2a)–(5.6) can be expected to emerge downstream.

(ii) Reduction or increase of the input perturbation velocities from the straight duct down-
stream is reflected simply in ε, and hence α, becoming smaller or larger in turn.

(iii) The same applies if the radius of curvature a is decreased or increased, respectively,
provided other conditions are maintained. Both (ii),(iii) correspond to extremes of the para-
meter α, then, which shows itself only in the input velocities being proportional to α.

The regime of small α values is equivalent to those for small swirl described in Section 5.1
and small inertia in Section 4.

Similarly, large-α effects appear as for large swirl in Section 5.2. Provided that U,V,W,R
are all comparable and scale as α, the short range θ ∼ α−1 is indicated first, where the
centrifugal force is secondary and so the primary flow solution equilibrates. By contrast the
contribution of order unity to R grows linearly in αθ, due to (4.5). In consequence an inertial
growth takes place on the longer range where θ is of order one exactly as in Section 5.2. A
slightly different short-range initiation occurs if the entrance swirl velocities are much less
than the streamwise velocity perturbation, such that U,V,W scale with α, α1/2, α1/2 in turn,
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since then θ scales with α−1/2 instead, leaving the full nonlinear equations intact. This case
retrieves the large-θ1 properties discussed in (i) at the start of this subsection.

6.2. RELATED POINTS

This work has focused primarily on swirl effects, as discussed especially in Section 5; the
alterations to other conditions in Section 6.1 tend to support that focus. Dependence on
the parameters α, θ1 is clearly present also, due to the factors in Section 2 and bearing in
mind that the original vorticity and stream functions are (R,ψ)/(αθ1). The present study,
however, indicates strong dependence on the form of the input velocities, including swirl, at
the entrance to the bend. Likewise, whether for smooth general shapes of cross section or the
rectangular ones with their extra, but localised, flow responses near each corner, the central
feature (inferred from (4.5) with (4.4)) of unbounded linear growth in the total streamwise
vorticity accentuates the importance of the induced swirl.

The central points (a)–(e) of the industrial setting given in the introduction, to repeat, em-
phasize new features in themselves. Viscous effects in particular are neglected on the grounds
that laminar flow would remain attached over the short time scales of industrial concern, while
turbulent (plug) flow would not be prone to separate anyway. Exceptions to this can occur in



340 F.T. Smith and L. Li
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extremes, of course, such as at large times or very close to a corner or a wall or very far
downstream: compare with Section 4. Again direct experimental comparison is lacking and
in a sense theory must take the lead, as hinted at in the introduction. Comparing with [20]’s
brief comments on relevant experiments and [33]’s turbulent-flow results for square ducts, we
find that imbedded helical motions and doubly peaked axial velocity profiles can occur as in
experiments. Theoretically, these depend on the input conditions, as does the direction of the
cross-sectional flow (see also [33]) under centrifuging and radial pressure gradient. We also
refer forward here to the fourth paragraph below.

The enhanced impact for larger ε (i.e. for increased input velocity perturbations) is clearly
sensible physically, whereas the impact of increasing the bend radius a alone, namely an
enlargement of the swirl (see Section 6.1), is a surprising property at first glance. The latter is
due, however, to the corresponding increase in the bend length for a given turned angle θ1. If
we consider instead a given length of bend, then we have αθ1 being fixed along with a given
(ŨI , ṼI , W̃I ) input, which implies the orders (θ1, 1, 1) for (UI , VI ,WI ) in general. So here a
small turned angle θ1 immediately yields a dominant swirl effect with negligible centrifuging
as before, while the case of large θ1 is equivalent to that of large α also described previously.
These alterations for a fixed bend length thus make good physical sense.
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The unsteady counterpart of the present work has a scaled operator ∂/∂t added to ∂/∂θ in
the governing Equations (2.1b),(3.1) and so essentially leaves the present findings unchanged
in a forward-moving frame. Similarly other shapes of bend and duct cross section are to be
covered by a generalization of the current approach.

The even more nonlinear case, however, where in effect ∂/∂θ is replaced byU∂/∂θ, 2∂U/∂y
by U∂U/∂y, and ∂U/∂θ is added to the continuity balance, needs further study, particularly
in terms of a likely breakup singularity arising at a finite θ value. That case loses the feature
((4.4),(4.5)) of unbounded linear growth. It also points to considerable influence on one-
dimensional duct-flow analysis. The leading-order influence so far from the cases addressed
in the present work is still small except for the extreme conditions mentioned where for
example the growth (5.6) holds, sometimes over a relatively short θ-range. The increase
in cross-plane inertia resulting from (5.6) tends to lead to the U∂U/∂θ case, altering the total
streamwise velocity profile rather than a perturbation as before. Further study on this is being
conducted by Mr. P.L. Wilson at UCL, linked with Sortex Ltd., along with the inclusion of
compressibility.

The above trends also point to the desirability in practice of suppressing the oncoming
spanwise and streamwise vorticity, generating input swirl, especially from any imperfections
upstream. That suppression tends to reduce both the secondary flow produced by the bend
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Figure 6. For smooth cross sections, from (3.6). (a–c) Cross-sectional shapes for three values of q (0·005, 0·02,
0.1). (d) The corresponding numerical solutions, giving D versus πθ/2.

and its interaction with the streamwise motion. Here the simple weak-inertia results in Sec-
tions 4, 5 may well prove the most useful overall as, for a typical bend ratio a of 10 say,
those results apply for representative velocity perturbations (ε values) up to about 10%. (In
[33]’s experiments a is 2·3 and ε is 0·28, considerably smaller and larger respectively than the
values quoted in the preceding sentence, and indeed [33]’s results also are more indicative of
the more nonlinear case of the previous paragraph.) Again, the pressure response in the bend
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Figure 7. The effect of increasing swirl downstream (Section 5.2) on the edge values of the slip velocity U , for
a rectangular cross section; showing the smooth entry condition and the large-θ form (denoted inf) for the four
sides of a 3 by 1 rectangle in this case.

is small here because of the vanishing of the leading-order pressure term, in (4.3), owing to
the constant duct area. The main response thus rests on the order ε2 contribution p1 appearing
in (2.1c,d), which can be positive or negative. An arbitrary function of θ that can be added
to p1 is determined by higher-order balances involving U∂U/∂θ,UW, and so on; compare
the nonlinear regime above. The case (4.2) for example yields p1 ∝ c, while small and large
swirl in Section 5 yield p1 of order UI,"2, respectively, and the linear growth (5.6) gives
|p1| ∝ θ2

1 , but either sign of pressure is possible at this level. The possibility here of little
or no pressure loss in inviscid flow due to short active time scales or turbulence offers an
interesting contrast with the pressure losses common in viscous flows. This connects back to
the industrial applications.
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